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Knotting and supercoiling in circular DNA: A model incorporating the effect of added salt
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We consider a model of a circular polyelectrolyte, such as DNA, in which the molecule is represented
by a polygon in the three-dimensional simple cubic lattice. A short-range attractive force between non-
bonded monomers is included (to account for solvent quality) together with a screened Coulomb poten-
tial (to account for the effect of added salt). We compute the probability that the ring is knotted as a
function of the number of monomers in the ring, and of the ionic strength of the solution. The results
show the same general behavior as recent experimental results by Shaw and Wang [Science 260, 533
(1993)] and by Rybenkov, Cozzarelli, and Vologodskii [Proc. Natl. Acad. Sci. U.S.A. 90, 5307 (1993)] on
the knot probability in circular DNA as a function of added salt. In addition, we compute the writhe of
the polygon and show that this also increases as the ionic strength increases. The writhe computations
model the conformational behavior of nicked circular duplex DNA molecules in salt solution.

PACS number(s): 87.10.+¢

I. INTRODUCTION

Many biologically interesting polymers, such as DNA
and RNA, are highly charged polyelectrolytes and their
conformational properties will be sensitive to the charge
density along the polymer chain and to the ionic strength
of the solution in which they are dissolved. In particular,
the entanglement complexity of the polymer depends sen-
sitively on the ionic strength, and this has been modeled
by Klenin et al. [1] by varying the effective diameter of
the polymer chain. In the case of DNA the incidence of
topological entanglements such as knotting and catena-
tion is critical to the functioning of the cell [2] and, for
this reason, there exist enzymes to control the geometry
and topology of DNA, especially during replication and
recombination. In vitro and in vivo topological enzymol-
ogy experiments utilize supercoiling, knotting, and can-
tenation of circular DNA to study the mechanism and
synaptic complex structure of enzymes such as to-
poisomerase and recombinase [3—-5]. The conformation
of DNA in vivo depends on the cellular environment,
which is essentially an aqueous solution containing dis-
solved electrolytes. It is thus imperative to understand
the dependence of the geometry and topology of DNA on
the electrolyte concentration in cellular fluids.

Partly as a result of this, there has been a considerable
amount of work on the detection of knots in circular
DNA [6,7] and, more recently, in determining the knot-
ting probability as a function of parameters such as the
length of the DNA molecule and the ionic strength of the
solution [8,9]. In particular, Shaw and Wang [8] recently
determined the frequency of occurrence of knotted con-
formations upon cyclization of linear duplex DNA mole-
cules with 5.6 and 8.6 kilo-base-pairs, in aqueous solu-
tions containing varying amounts of NaCl and MgCl,.
The linear DNA substrates were designed to have single
stranded ‘“‘sticky” ends similar to phage A. These ends
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are cohesive, and cyclization of the DNA traps DNA to-
poisomers in the form of knots. Similar results were ob-
tained by Rybenkov, Cozzarelli, and Vologodskii [9] for
cyclization of linear DNA with 10 kilo-base-pairs. Since
DNA is a polyelectrolyte in which each monomer carries
a charge of the same sign, the Coulombic interaction be-
tween these charges will be repulsive and will yield an
effective diameter greater than the geometric diameter of
DNA. This Coulombic repulsion will be shielded by the
ions in solution, and so the effective diameter of the poly-
mer should decrease as the ionic strength of the solution
is increased. This will result in more compact linear ob-
jects, which are more likely to be knotted upon cycliza-
tion. This expectation is born out in the experiments of
Shaw and Wang [8] and Rybenkov, Cozzarelli, and Volo-
godskii [9] which show that the probability of obtaining
nontrivial topoisomers depends strongly on the ionic
strength of the solution; the knot probability increases
significantly with increasing ionic strength.

There have been two complementary approaches in
theoretical work on knotting in models of ring polymers.
One approach has been to prove rigorous results about
the asymptotic behavior, in the limit when the rings be-
come infinitely large [10—14]. The most important con-
clusion of these works is that the knot probability con-
verges exponentially rapidly to unity as the size of the
ring polymer goes to infinity, thus giving an affirmative
answer to the conjecture of Frisch and Wasserman [15]
and Delbruck [16].

The other main approach which has been used to study
the knot probability relies on Monte Carlo methods
[1,17-21]; in fact, although Monte Carlo techniques are
limited to quite short rings, they can give quantitative re-
sults for particular models. In Sec. III we report the re-
sults of a Monte Carlo study of the knot probability of a
ring polymer in solutions with various ionic strengths.

The mechanism of enzyme-mediated knotting and
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catenation of covalently closed circular duplex DNA in
solution is thought to comprise two steps. The molecule
supercoils due to the backbone strand linking deficit, sol-
vent quality and ion concentration, and enzymes such as
topoisomerase then allow strand passage via transient
enzyme-bridged single- and double-strand breaks in the
DNA chain. In order to study the dependence of super-
coiling on the ionic strength of the solvent, it is interest-
ing to examine geometrical complexity measures such as
the writhe of the polygon. Writhe has proved to be a use-
ful quanity in modeling the degree of supercoiling in
DNA [22,23]. In Sec. IV we report some Monte Carlo
results on the dependence of the writhe of a ring polyelec-
trolyte on the ionic strength of the solution.

II. DESCRIPTION OF THE MODEL

Lattice models of polymers offer considerable advan-
tages both from theoretical and computational points of
view. In the cubic lattice, Z 3 ring polymers are con-
veniently modeled by polygons, i.e., by a sequence of dis-
tinct vertices such that successive pairs are nearest neigh-
bors and are connected by edges, and the last vertex is a
nearest neighbor of the first and connected to it by an
edge. The vertices in the polygon represent the mono-
mers (or sets of monomers) in the ring polymer, and the
edges represent the chemical bonds connecting the mono-
mers (Fig. 1). There are efficient Monte Carlo algorithms
for simulating polygons in the cubic lattice [24] which
can be used to compute thermodynamic equilibrium
properties for the model considered in this paper, and the
algorithm can be efficiently implemented through the use
of integer data structures such as hash tables.

Previous Monte Carlo work on knot probabilities has
focused on models with only a short-range repulsive force
between monomers in the ring, or with a short-range
repulsion and an additional attractive force to mimic the
effect of varying the quality of the solvent [20]. In this
study we modify these models to include a screened
Coulomb potential between the monomers, where the
screening can be varied to account for the effect of added

FS="
V-

FIG. 1. A trefoil on the cubic lattice with n =54.

electrolyte. This kind of interaction can be approximated
by a Yukawa-type potential which represents the effective
ion-ion potential in a Debye-Hiickel model for ions in a
continuum dielectric solvent [25]. The total potential en-
ergy of a polygon in this model is

KT .
U=3[ulry)t+4e V/r;],
i<j

where r; is the distance between the ith and jth vertices
of the polygon, measured in lattice units, and the sum is
over all nonbonded pairs of vertices. The first term, u (r),
is equal to kTv if r =1 and zero otherwise, where v is a
negative constant. We chose for v the value —0.26 since
it is known that, for the simple cubic lattice, it corre-
sponds to a poor solvent regime [26], in which the knot
probability is higher and easier to study. The second
term in the potential energy is the Yukawa term which
accounts for the screened Coulomb interaction between
the charges on the monomers of the polyelectrolyte. k!
is the Debye length measured in lattice units and its value
reflects the ionic strength of the solution. The parameter
A is connected to the charge density along the polymer
chain, and to a length scale in the polymer, such as the
persistence length. We do not expect the main features of
the behavior to depend very sensitively on the value of A4
and, to check this, we have carried out calculations for a
range of values of A stretching over two decades.

We have investigated the properties of this model using
a Metropolis Monte Carlo approach based on pivots [24].
The conformation space is explored by making proposed
changes in the conformation of the polygon by choosing
a pair of vertices at random and modifying the shorter
part of the polygon between these two vertices, to obtain
a new polygon. The new polygon is accepted with a
probability chosen to make the limiting distribution the
Boltzmann distribution with U as the associated energy.

III. ESTIMATES OF THE KNOT PROBABILITY

Determining whether or not a polygon is knotted is a
nontrivial matter. However, provided that the knot is
not too complex, it can be detected by computing the
Alexander polynomial A(?) of the polygon [17], evaluated
at t =—1. If A(—1)71 the polygon is knotted. [This is
not a perfect detector of knotting since it is possible for
A(—1)=1 for a knotted polygon. However, this occurs
with extremely low probability for polygon lengths that
we are considering in this paper.] The Monte Carlo
simulation was run for 2.5 X 10° iterations while the knot
type of the polygons was determined every 50 iterations,
giving a sample size of 50000 for each data point. Aver-
ages and variances over the sample size were computed
by estimating autocorrelation times over suitably chosen
windows. All error bars in the figures are one standard
deviation.

In Fig. 2 we show the dependence of the knot probabil-
ity on « for polygons of three sizes, n =200, 300, and 400,
with A /kT =0.01. It is clear from this figure that the
knot probability increases as n increases, at fixed «, and
increases as k increases at fixed n. It seems that the knot
probability levels off to a relatively small value as k be-
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FIG. 2. The knot probability as a function of «, for polygons
with n =200 (Q), 300 (O), and 400 (A). k is in units of
reciprocal-lattice spacings.

comes very large. When « is sufficiently large, the
Coulombic repulsion is effectively negligible so that this
behavior is consistent with previous findings that the
knot probability is quite small at those values of n, even
in a poor solvent [20]. For a 1-1 electrolyte, « is propor-
tional to the square root of the concentration of the ions,
so we can compare Fig. 2 with the experimental results of
Shaw and Wang [8] for a solution containing NaCl. The
behavior is very similar, and our results confirm the gen-
eral shapes of the curves drawn through the experimental
points in that paper. To investigate the influence of the
charge density on the knot probability we repeated the
calculations of knot probability for 4 /kT =0.1 and 1,
with n =300. The results are shown in Fig. 3. The same
general behavior occurs at each value of A, although the
sigmoidal portion of the curve moves to higher values of
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FIG. 3. The knot probability as a function of « for n =300
with 4 /kT=0.01(0), 4/kT=0.1(A),and 4 /kT=1 ().

k as A increases. That is, as the charge density along the
polymer increases, a smaller value of the Debye length is
required for the knot probability to increase markedly.

We also studied the probability of formation of various
knot types as a function of k. In Table I we report their
distribution for polygons of length » =300 and 400, and
A /kT=0.01. Itis clear that as « increases not only does
the number of knots increase but so does their complexi-
ty.

We expect that increasing the ionic strength will lead
to a decrease in the overall dimensions of the molecule
and we have confirmed this by calculating the mean-
square radius of gyration as a function of n and «. The
results are shown in Fig. 4. The mean-square radius of
gyration drops rapidly as « increases, and then settles to a
plateau. This change in the dimensions is much more
marked for larger n. An alternative way to characterize
this change in the compactness is to focus on the number
of pairs of vertices which are nearest neighbors on the
lattice. We show (C,), the mean number of first-
neighbor vertex pairs (or contact number), as a function
of k, for different values of n, in Fig. 5. There is a marked
increase in this measure of compactness as « increases, as
expected since the contact number is known to be posi-
tively correlated with the increasing knot probability in
polygons [20]. We conclude that increasing the ionic
strength of the solution is equivalent to reducing the
quality of the solvent and hence increasing the knot prob-
ability. We also know that more complicated knots have
smaller dimensions [27], which is consistent with the ob-
servation that these knots have higher electrophoretic
mobility than less complicated ones [28].

TABLE 1. Table of knot distribution (%) as a function of «
for two polygons of length n =300 and 400, respectively.

A(—1) 1 3 5 >7

K

n =300
0.1 99.96 0.04 0.00 0.00
0.32 99.83 0.17 0.00 0.00
0.56 99.25 0.74 0.00 0.00
1 99.36 0.79 0.05 0.00
1.78 98.59 1.34 0.03 0.04
3.16 98.27 1.60 0.13 0.00
10 98.23 1.77 0.04 0.00
17.78 98.59 1.40 0.01 0.00
31.62 98.53 1.45 0.02 0.01
100 98.30 1.23 0.47 0.00
n =400

0.1 99.99 0.01 0.00 0.00
0.32 99.81 0.19 0.00 0.00
0.56 99.22 0.67 0.01 0.00
1 98.77 1.11 0.12 0.00
1.78 97.77 2.07 0.04 0.12
3.16 98.06 1.74 0.13 0.07
10 97.98 1.91 0.10 0.01
17.78 97.27 2.25 0.27 0.21
31.62 96.33 3.37 0.28 0.02

100 96.80 2.98 0.19 0.03
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FIG. 4. The dependence of the mean-square radius of gyra-
tion {R2) on « for polygons with 4/kT=0.01, n =200 ({),
300 (0), and 400 (A). The error bars are smaller than the size of
the symbols. « is in units of reciprocal-lattice spacings, and the
mean-square radius of gyration is in units of lattice spacing
squared.

IV. ESTIMATES OF THE WRITHE

The writhe of a polygon is a geometrical property, not
a topological one. To define writhe consider any simple
closed curve in R3, and project it onto R? in some direc-
tion X. In general, the projection will have crossings and,
for almost all projection directions, these crossings will
be transverse, so that we can associate a sign +1 or —1
with each crossing, as in Fig. 6. For this projection we
form the sum of these signed crossing numbers, S(X),
and then average over all projection directions X. This
average quantity is the writhe W of the curve [29].
Writhe is a geometrical quantity (since it is not invariant
under ambient isotopy) and is a real number which mea-
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FIG. 5. The dependence of the mean number of contacts
(C,) on « for polygons with 4 /kT=0.01, n =200 ({), 300 (Q),
and 400 (A\). The error bars are smaller than the size of the sym-
bols.
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FIG. 6. Positive and negative crossings are determined by a
right-hand rule.

sures the extent to which the polygon is supercoiled.

In principle, one needs to average the sum of the
signed crossing numbers over all (regular) projections but
there is a useful theorem [30] which considerably
simplifies the calculation for polygons on lattices. For
self-avoiding polygons in Z3, the computation of the
writhe can be reduced to the average of linking numbers
of the given curve with four selected pushoffs [30].

In Fig. 7 we show the dependence of the expectation of
the absolute value of the writhe on « for n =400, for
A/kT=0.01 and 0.1. The writhe increases with « for
small values of k and then levels off to a plateau. This is
somewhat different from the behavior of the knot proba-
bility and, in particular, the plateau is reached for smaller
values of k. At small values of « the writhe depends no-
ticeably on the value of 4 but both curves approach the
same plateau value as « increases. Increasing the charge
density decreases the writhe at small « but, as the Debye
length decreases, and the screening therefore increases,
the writhe becomes almost independent of the charge
density.

V. SUMMARY AND DISCUSSION

The model used in this paper is a very simple one. Its
essential features are the nonrigid nature of the lattice po-
lygon (which models the entropy of the ring), the short-
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FIG. 7. The dependence of the average of the absolute value

of the writhe on k for n=400, A/kT=0.01 (O), and

A/kT=0.1(A).
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range attraction between monomers (which models the
solvent quality), and the screened Coulomb potential
(which models the effect of the added electrolyte). Al-
though it contains no detailed chemical or physical prop-
erties of DNA and neglects details of the local structure,
nevertheless it gives good qualitative and semiquantita-
tive agreement with the experimental results on closed
circular DNA. We deduce that the variation of the knot
probability with ionic strength, observed experimentally,
is primarily determined by a combination of the entropy
of the ring, the solvent quality, and the screening of the

Coulombic potential due the added electrolyte. In addi-
tion we have presented computations of the writhe as a
function of ionic strength, and have shown that this
quantity is also sensitive to the concentration of ions in
the electrolyte solution.
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